
after which the above factors cause the meniscus to descend again. However, the rapid evap- 
oration means that the thickness and length of the wetting film decrease over time [5], so 
the oscillations are damped and the meniscus halts at the position corresponding to the step 
in the given capillary. 

Pressures less than those characterized by Kn > 0.i do not alter the menuscus position, 
since in molecular flow the gas pressure difference in the capillary becomes quite small. 

These measurements on capillary rise at reduced pressures make it necessary to consider 
the evaporation from the meniscus but show that there is a meniscus step, for which a physi- 
cal explanation exists. 

NOTATION 

r and L, capillary radius and length; Ah, distance from meniscus to mouth of capillary; 
As meniscus step; 4, meniscus rise; s and x, maximal and relative rise; e, wetting angle; 
P, gas pressure outside capillary; Pc, vapor-air mixture pressure above meniscus; &P, pres- 
sure difference in vapor-air mixture along capillary; Ps, saturation vapor pressure; Ts 
liquid temperature at meniscus; p gas density outside capillary; Pv, Pa, and Pe, densities 
of vapor, air, and vapor-air mixture; v, evaporation rate; A, molecular mean free path; Kn, 
Knudsen number. 
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RELATIVE MOTION OF DROPS UNDER THE ACTION OF 

VARIABLE FORCES 

I. I. Ponikariv, O. A. Tseitlin, 
and Yu. V. Shkarban 

UDC 66.067:532.5 

The boundary between "moderate" and "large" drops, which is fixed for each 
drop-medium system in gravitational conditions, shifts toward smaller drops 
with increase in the forces applied to the drop. 

The relative motion of particles, including drops, in a medium is usually investigated 
in gravitational conditions, characterized by constancy of the forces applied to the parti- 
cle over both time and space. The results of such investigations also from the basis for 
calculations in those cases where, according to the operating conditions of the apparatus, 
the forces acting on the particle differ from gravitational forces. The so-called standard 
drag curve is widely used; it consists of a dependence of the drag coefficient on the 
Reynolds variation over a wide range of variation of the latter. This curve is suitable 
for solid spheres, regardless of the nature of the applied forces and the physical proper- 
ties of the medium. The situation is different for particles with a mobile interface with 
the medium. For bubbles and drops, the existence of a Reynolds number Re b at which the 
drag coefficient begins to increase significantly with increase in Re has been established. 
The number Reb, called the boundary or transition value, is assumed to be constant for each 
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TABLE i. Dependences Proposed for Determin- 
ing the Boundary Reynolds Number and Drag 
Coefficient after Transformation Using the 
Dimensionless Complex A 

Source R e  r 

[ i]  

[21 
[31 
[41 
[51 

[51 
[71 
[81 
[91 

[101 

4,55 A ~ 
2,92 A ~ 

16,3 A ~ 
11,7 A ~ 
19,8 A ~ 149 

4,107 A ~ 
9,0 A ~ 173 
4,04 A ~ 
7,35 A 0"232 

20 A ~ 15 

0,29 Re I ' 4A - ~  

0,0032 Re I'56 A - ~  

0,0568 Re ~ A - ~  17 
0,073 Re 1,e4 A -~  

0,0052 Re 1'4 A-O,e3 
0,0302 ReaA - ~  7 Is 

0,0108 Re4A -* 

drop-medium system [i-I0], and different authors have used different methods for its deteri- 
nation. After simple substitutions, they may be reduced to a common form in terms o:! the 
number A, which is usually regarded as a constant of the system (Table I). The great dis- 
crepancy in the coefficients and power indices of different authors is noteworthy; it may be 
explained, first, by the limitation of the experimental material - each drop-medium system 
gives only one value of the boundary Reynolds number; and, second, in that there is actually 
some range of Re within which change in conditions occurs but, because of the difficulty of 
sharp definition of this range, the arbitrary value Re b is used. Analogously, expressions 
are obtained for the frontal-drag coefficients ~ at Reynolds numbers larger than the bound- 
ary value, and they are reduced to dependences on the Reynolds number and A (Table i~. Di- 
vergence in the constants is again seen; this is due to instability in the behavior cf the 
drops and the small range in variation of Re. 

The dependences in Table i may be written in the general form 

R e b =  m A  ~, ( 1 )  

= n Re~A-V, ( 2 ) 

w h e r e  m, n ,  a ,  ~,  u a r e  c o n s t a n t s ;  A = o a p 2 / ( p % p g ) .  

The  f o r m  o f  t h e  r e s u l t s  i n  E q s .  ( 1 )  a n d  ( 2 )  i s  c o n v e n i e n t  f o r  t h e  r e p r e s e n t a t i o n  o f  t h e  
b e h a v i o r  o f  Re b and  ~ u n d e r  t h e  a s s u m p t i o n  t h a t  t h e s e  d e p e n d e n c e s  r e f l e c t  t h e  f o r c e  i n t e r a c -  
t i o n  b e t w e e n  t h e  d r o p s  a n d  t h e  medium n o t  o n l y  f o r  t h e  g r a v i t a t i o n a l  f i e l d .  R e p l a c i n g  a c -  
c e l e r a t i o n  d u e  t o  g r a v i t y  by  t h e  a c c e l e r a t i o n  j ,  c o r r e s p o n d i n g  t o  t h e  f o r c e  a c t u a l l y  a = t i n g  
on t h e  d r o p ,  t h e  f o l l o w i n g  c o n c l u s i o n s  may be  r e a c h e d :  a )  w i t h  i n c r e a s e  i n  t h e  f o r c e ~  a p -  
p l i e d  t o  t h e  d r o p ,  t h e  b o u n d a r y  R e y n o l d s  n u m b e r  b e c o m e s  a v a r i a b l e ,  d e c r e a s i n g  w i t h  i n c r e a s e  
i n  t h e  a c c e l e r a t i o n  j ;  b )  t h e  d r a g  c o e f f i c i e n t  i n c r e a s e s  h e r e .  I n  t h e  s i m p l e s t  c a s e ,  t h i s  
means that, if a constant force exceeding the gravitational force acts on the drop, the 
boundary Reynolds number becomes less than in purely gravitational conditions, and th,~ drag 
coefficient increases. For comparison, the drag coefficient for a solid sphere decreases 
in these conditions, or remains constant (at large Re). 

In applied problems associated with the introduction of drops in a flow or effer~,escence 
in a motionless medium, the force interaction between the drops and the medium is compli- 
cated by inertial effects, which affect the value of the drag coefficient. Nevertheless, 
there is a possibility of modeling the conditions in which forces of variable magnitude are 
equalized practically instantaneously by the drag: to this end, the drop must be introduced 
in a rotating liquid [ii]. The centrifugal force acting on the drop is proportional to the 
centripetal acceleration m2R, which determines the boundary Reynolds number and the drag co- 
efficient 

Re b ~ (~2R)-~, ( 3 ) 

~ Re ~ (m2R) -~.  ( 4 ) 
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Fig. i. Diagram of the change in conditions of drop 
deposition in a centrifugal field: 1-7) successive 
positions of the drop and corresponding values of 
Re, Reb, and A. 

Two variants of drop motion are possible: heavier drops move from the center of the 
rotor to its periphery and lighter drops in the opposite direction. In both cases, using 
Eqs. (3) and (4), Re b and ~ may be determined for any R if the numerical values of the co- 
efficients and power indices are known. A diagram of the variation in Re and the attain- 
ment of Re b is shown in Fig. i. Suppose that initially the drop position is determined by 
the radius R I, which corresponds to the Reynolds number Re I and point 1 on the drag curve, 
as well as boundary Reynolds number Rebl. Moving away from the center of rotation, the drop 
reaches radius R2, which corresponds to Reynolds number Re 2 and point 2 on the drag curve. 
According to Eq. (3), Re b decreases because R 2 > Rl, and takes the position denoted by Reb2. 
As the drop moves away from the center of rotation, Re and Re b move closer together, and at 
some point 4 they coincide. This means that boundary conditions have been reached, and then 
the dependence of the drag coefficient ~ on the Reynolds number must take the form in Eq. 
(4). With further increase in distance to the axis of rotation of the medium, the boundary 
Reynolds number continues to decrease (Reb~, RebT), and the actual Reynolds number increases 
(Re 6, ReT). However, in this case too, the influence of the boundary Reynolds number is 
felt: the drop motion is determined by the different position of the curves A6, AT, .... 
Hence it follows that increase in drag coefficient in the centrifugal field in the section 
Re > Re b is more significant than in the gravitational field. In Fig. 1, this is clearly 
demonstrated by the difference in slope of the segments 4-5-6-7 and A = const. The sharp 
increase in drag over the radius indicates slight change in drop velocity with relative mo- 
tion in the given conditions. This is confirmed by experiment [12]. 

The motion of the lighter drop occurs in the opposite order, so that Fig. 1 may again 
be regarded as an illustration in this case. Note that the drop reaches the initial posi- 
tion 7 after a small acceleration section. 

The centrifugal field gives the following advantages: a) it is possible to have a set 
of values of Re b in a single drop-medium system (in a gravitational field, there is only 
one); b) it is possible to avoid extrapolation of the results obtained in a gravitational 
field and to perform the investigation in a wide range of forces acting on the drop. 

In conditions of variable forces, it is expedient to reexamine the question of the use 
of A, which is justified in a gravitational field in that it is constant for each drop- 
medium system. In conditions of variable force, this is no longer true of A but is true in- 
stead of the Laplace number, containing the drop dimension d, which remains constant in the 
course of drop motion. The Laplace number Lp and A are related, so that the results may al- 
ways be converted 

~dp 3/ 6 A~Re 2. (5) 
Lp -- ~z -- ~ a 

The segment 4-5-6-7 (Fig. i) is characterized precisely by constant Laplace number. 

The general form of the dependence for the drag coefficient in terms of the Laplace 
number at above-boundary Reynolds numbers is obtained from Eqs. (2) and (5). 
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Fig. 2. Dependence of the boundary Reynolds number on the 
centripetal acceleration. In gravitational conditions, Re b 

500; water drop in ketosine. ~2R, m/sec 2. 

db 

2 

f 
i I I I I I 

GO 80 yoo 200 ~o0 600 /o0o m2R 

Fig. 3. Dependence of the boundary diameter on the centri- 
petal acceleration. In a gravitational field, d b = 4.2 mm; 
water drops in kerosine, db, mm. 

: t~Re~Lp -v. (6)  

The bounda ry  Reyno ld s  number i s  d e t e r m i n e d  by t h e  g e n e r a l  v a l u e  o f  ~ f rom Eq. (6~ and 
t h e  d r a g  c u r v e ,  Assuming t h a t  

g = aRe -n, (7 )  

it follows that 

Re b = .z Lp r ( 8 ) 

After modifying the known dependences for centrifugal-field conditions, it is found that 
the constants in Eqs. (6) and (8) differ in the same way as the constants for ~ and Re b in 
the formulas in Table i. In addition, the modification in this case is associated with ex- 
trapolation of the dependences obtained for a narrow range of variation of the basic parame- 
ters. Therefore, the results of measuring the dynamic characteristics of a drop freely set- 
tling in a uniformly rotating liquid may be used to determine the constants in Eqs. (6) and 
(8). The corresponding experimental method was outlined in [13, 14]. 

The experimental data confirm the fundamental conclusion that Re b increases with in- 
crease in the force acting on the drop. As an example, results are shown in Fig. 2 for the 
case when the centrifugal force is the only variable quantity. Overall, the volume of exper- 
imental material permits a reduction in Re b from 500 to 40, in Lp from 75,000 to 400, md 
in A from 10 l~ to 104 . The following theoretical dependences are obtained here 

Reb= 3,6 Lp ~ : IOA ~ (9 )  

For Re > Re b 

= 0,11Re~'SLp -~'4 = 0,18 ReI'27A -~ (I0) 

As usual, the unique value determined by Eqs. (2) and (7) is taken as the boundary 
Reynolds number. In fact, the transition from one set of conditions to another is not so 
sharp, and occurs in some range of Re. This complicates the determination of Reb, and 
therefore the maximum spread in the values of up to 20% given by Eq. (9) must be regarcted as 
perfectly satisfactory. 

Using Eqs. (9) and (i0), the equation of drop motion under the action of variable forces 
may be solved, taking account of the change in deposition conditions. 

Some interesting consequences follow directly from Eq. (9). After expansion of the 
generalized variables, a relation is established between the drop diameter and the centri- 
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Fig. 4. Dependence of the drop velocity 
on its diameter at various centripetal 
accelerations ~:R, m2/sec: i) i00; 2) 
200; 3) 500; 4) I000; 5) 2000; water 
drop in kerosine, v, m/sec; d, mm. 

petal acceleration in conditions of Re b 

rib-- a(~2R) -~ (11)  

where a is a constant consisting of the physical properties of the drop-medium system. In 
contrast to a gravitational field, the boundary diameter is a variable, decreasing with in- 
crease in the forces acting on the drop (in this case, centrifugal). In Fig. 3, Eq. (ii) 
is shown for a specific system. With moderate rotation of the rotor, the boundary diameter 
is reduced by practically an order of magnitude. Such concepts as "moderate" and "large" 
drops thereby lose the geometric meaning which they have in a gravitational field. Drops 
less than a millimeter in size are "large" in a centrifugal field; these form most of the 
drops in some types of centrifugal extractors [15]. 

The velocity of drops of diameter d b has the following peculiarity. It is known that, 
in a gravitational field, each drop corresponds to a single velocity value, while the drop 
of diameter d b is the fastest. In a centrifugal field, there is the possibility of change 
in drop velocity with fixed diameter, i.e., any drop may correspond to the boundary velocity. 
The relation between the velocity Vb, the diameter db, and the centripetal acceleration at 
Re b follows from Eqs. (9) and (ii) 

% =  bd~ ~ (12) 

where b is a constant consisting of the physical properties of a specific drop-medium sys- 
tem. Equation (12) for the given system is analogous to the vb-d b relation in a gravita- 
tional field (Fig. 4). Curve 7, passing through the maximum of the v-d curves for discrete 
values of the centripetal acceleration, corresponds to Eq. (12). For comparison, curve 6 
corresponds to a gravitational field. 

Decrease in boundary value of the Reynolds number leads to the consequence that in con- 
ditions of motion so-called "large" drops are those usually regarded as "moderate." Cor- 
rect characterization of the drop-deposition conditions facilitates more accurate calcula- 
tion of the productivity and efficiency of mass-transfer equipment in which an energy sup- 
ply is used to increase the relative velocity of the phases. 

NOTATION 

P, D, density and viscosity of the medium; o, interphase tension, N/m; &9, difference 
in density of drop and medium, kg/m3; v, drop velocity relative to medium, m/sec; d, diame- 
ter of sphere of the same volume as the drop, m; j, acceleration due to the force applied 
to the drop, m/sec 2 - in particular, the acceleration due to gravity g or the centripetal 
acceleration m2R; ~, frequency of rotation of rotor liquid, sec-Z; R, distance from drop to 
axis of rotation, m; ~, frontal drag coefficient of drop; Re, Reynolds number; Lp, Laplace 
number. Subscripts: b, boundary between conditions of "moderate" and "large" drops. 
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USING THE ISENTROPIC INDEX TO CALCULATE THE 

PARAMETERS OF TWO-PHASE FLOW 

V. V. Fisenko, V. E. Cheremin~ 
I. A. Ivakhnenko, and O. E. Zoteev 

UDC 66.021.2.001.24 

A method of determining the volume vapor content in two-phase mixture is pro- 
posed, on the basis of the relation between the isentropic index of the mixtur~ 
and the "frozen" sound velocity there. 

In the gas dynamics of an ideal gas, the isentropic index 

v Op 

P 

i s  u s e d  as  an e f f e c t i v e  q u a n t i t y  p e r m i t t i n g  s u f f i c i e n t l y  f a s t  and r e l i a b l e  c a l c u l a t i o n ,  u s -  
ing  g a s - d y n a m i c  f u n c t i o n s ,  o f  a l l  t h e  n e c e s s a r y  p a r a m e t e r s  o f  i d e a l - g a s  f l o w :  t h e  p r e s s u r e ,  
t e m p e r a t u r e ,  and d e n s i t y  [1 ,  2 ] .  Here  k i s  u s u a l l y  assumed t o  be c o n s t a n t  f o r  e a c h  s p e c i f i c  
gas  o v e r  t h e  whole  o f  t h e  p r a c t i c a l  p r e s s u r e  and t e m p e r a t u r e  r a n g e s ,  and depends  b a s i ( a l l y  
o n l y  on t h e  number  o f  r o t a t i o n a l  d e g r e e s  o f  f r e e d o m  o f  t h e  gas  m o l e c u l e  [ 2 ] .  For  w a t e r  v a p o r  
(~ro = 3) 

k - 5 ' - ] -6 r~  8 -- 1,333 ... 
3 , - ~ r o  6 

Taking into account that the gas (vapor) system is only a particular, limiting case of 
the multiphase liquid-gas (vapor)-solid particle system, it is natural that the scope of use 
of the isentropic (adiabatic) index of the mixture must be broadened for such systems. In 
this case, it becomes a function of the temperature, pressure, and gas content [2, 3]. 

Consider the propagation of a weak perturbation wave in a two-phase mixture, assuming 
that the distribution of one phase in the other is arbitrary and the mixture may be both in 
a state of rest and in a state of motion. 
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